Exception Handling

13-20 COOL User’s Manual

Exception Handling

User-Defined
Exception Types

13.20 The COOL exception mechanism detects and raises an exception and
finds the appropriate exception handler. To define a user-specific exception class, you
must derive from the Exception class or one of the predefined exception types Error,
Fatal, System_Error, System_Signal, or Verify_Error. All new data members
should be public. The report member function will need to be changed to reflect the
nature of the newly created type of exception.

NOTE: Derived exception classes should have public data members. Initialize these
data members with an assignment statement in the EXCEPTION macro invocation,
and access the data members by exception handler functions.

To handle a specific type of exception, define an exception handler function that takes
as its first argument a pointer to the exception object and returns void. An exception
handler object is passed a pointer to this function through its constructor. The exception
handler function can be defined with more than one argument, but anew exception han-
dler class must be defined with a new version of the virtual invoke_handler member
function. For example, the Jump_Handler class modifies the invoke_handler mem-
ber function to call a function with two arguments: a pointer to the exception objectand
a pointer to the exception handler object.

Other user-derived exception classes can include data members for saving the wrong
values detected by a program. These values report the problem to the exception handler
and are often used when reporting the exception or error message to an output stream.
Data members can also be included in an exception class so the signaler (the exception
raiser) can indicate to an exception handler ways of proceeding from the exception.

For example, if an exception occurs because a variable has a wrong value, an exception
object is first created and then raised. The exception object defined for this problem
would have a data member with the wrong value and a data member for a new value. An
exception handler resolves this problem by supplying a new value (usually by inform-
ing the user about the wrong value and querying the user for a new value). The handler
stores this new value in the exception object and returns that object to the signaler. The
signaler then assigns this new value to the variable.

COOL User’s Manual

13-19

Exception Handling

IGNORE_ERRORS 13.18 In this example, IGNORE_ERRORS checks for an exception of type

Example

o000 A WN =

Error raised while summing up a vector of integers. In this simplistic example, the size
of the vector is unknown. If during the loop, an exception is raised, an error message
prints, and the function continues execution after the body of statements. If IG-
NORE_ERRORS were not used and an exception of type Error was raised, the pro-
gram would end.

int sum_up (vector& v) {

int sum=0;

Error* excp;

IGNORE_ERRORS (excp) {

for (int i = 0; i < NUM_ELEMENTS; i++)
sum += data[n];

}

if (excp !=NULL)
cerr << excp;

return sum;

Lines 1 through 11 implement a function that calculates the sum of the element values of
avector of integers. Line 2 initializes a variable to hold the running total. Line 3 declares
a pointer to an exception of type Error. Line 4 begins the IGNORE_ERRORS invoca-
tion. The pointer to the exception object is passed as an argument, along with the body
of statements between the braces. At the end of the body, the variable excp is checked to
see if it contains an address. If so, an exception must have been raised, so the exception
objectis output to the standard error stream. If its value is NULL, the loop ends success-
fully. Finally, line 10 returns the sum of the element values.

Exceptions as
Symbols and
Package

13.19 The exception handling facility uses the COOL symbolic computing
capability. Exception (along with most other COOL classes) is derived from
the Generic class, which eases run-time type checking and object query. The in-
voke_handler member function of the exception handler takes advantage of this fea-
ture. It calls is_type_of on the raised exception object to determine if it is of the desired
exception type. The exception name specified in the exception macros and the excep-
tion handler constructor are pointers to Symbol objects. All classes inheriting from
Generic are represented as type symbols in the COOL global symbol package, sym.

When the exception macros are expanded in the program, the formatted error message
constructed and stored in the exception object is also added as a symbol to the COOL
global error message package, ERR_MSG. This package is created with the
text_package macro which contains symbols whose values are the same as the symbol
names. All error messages ina COOL application are implemented as text symbols,and
a symbol definition file is automatically created that contains a summary of all the error
messages. These error message symbols can be represented in other languages by es-
tablishing a property list with the appropriate translation. See Section 11, Symbols and
Packages, for more information on the COOL symbolic computing capabilities.

13-18

COOL User’s Manual

Exception Handling

IGNORE_ERRORS 13.17 The IGNORE_ERRORS macro ignores an exception raised while executing a
body of statements. If an exception is raised while executing these statements, the
Jump_Handler created by the surrounding IGNORE_ERRORS macro saves a
pointer to the exception object. Program control returns to the statement following IG-
NORE_ERRORS macro. This macro eliminates the return value of the last statement
within the body if no exception was raised. In addition, IGNORE_ERRORS works
only for exceptions raised with the macros RAISE and STOP. The default exception
type is Error, if no exception type or group name is specified.

NOTE: IGNORE_ERRORS uses the system functions setjmp and longjmp. If an
exception occurs while executing statements within the body argument of the macro,
causing program control to be redirected, objects falling out of scope will not have their
destructor called. This is because the ANSI C setjmp/longjmp mechanism does not
support a mechanism for unwinding the stack.

Name: IGNORE_ERRORS — Ignores a raised exception within a body of code
Synopsis: IGNORE_ERRORS (Exception* excp, Symbol* excp_type = Error,
REST: args) { body}
excp Pointer that is set to the exception object if one is raised while exe-
cuting the statements in body; otherwise, this pointer is set to
NULL
excp_type A symbol representing the Exception class type of excp (that is,

Error, Warning, and so forth)

args One or more of the following comma-separated arguments or val-
ues:

group_name
One or more comma-separated pointers to Symbol objects
representing aliases for this exception class type

body Any valid C++ statements to be executed under the protection of
the IGNORE_ERRORS macro

COOL User’s Manual 13-17

Exception Handling

Jump_Handler
Class

Name:
Synopsis:

Base Class:
Friend Classes:

Constructors:

Member Functions:

Friend Functions:

13.16 The Jump_Handler class is derived from the Excp_Handler class. It
saves the current environment and also the exception object when an exception is raised.
Instances of this class are used by the IGNORE_ERRORS macro discussed below. An
exception handler function saves a pointer to the exception raised in the Jump_Han-
dler exception object and then calls the system function longjmp, passing the environ-
ment that was saved in the Jump_Handler object by setjmp.

Note: The excp_type arguments in the Jump_Handler class constructors and member
functions are pointers to Symbol objects. These arguments control the relationship of
an exception object with one or more exception handlers. They can be the symbol repre-
senting the name of a class (as with Error or Warning) that is created automatically for
any class derived from Exception through the Generic class and the class macro. The
arguments can also be symbol aliases created in the COOL sym package, or some appli-
cation-specific package. See section 11, Symbols and Packages, for more information.

Jump_Handler — An exception handler class for ignoring exceptions.
#include <COOL/Exception.h>

Excp_Handler

None

Jump_Handler (Jump_Handler_Function fi, Symbol* excp_type)
Creates an jump handler object associated with the exception type excp_type, in-
itializes the jump handler function data member to fn, and pushes itself on top of the
global exception handler stack. The jump handler function is of type void
(Jump_Handler_Function)(Exception®, Excp_Handler¥*).

Jump_Handler (Jump_Handler_Function fn, int number,
Symbol* excp_typel, Symbol* excp_type2, ...);

Creates an jump handler object, creates number group names excp_typel,
excp_type2, and so on if necessary, associates this jump handler object with num-
ber group names excp_typel, excp_type2, and so on, initializes the jump handler
function data member to f, and pushes itself on top of the global exception handler
stack. The jump handler function is of type void (Jump_Handler_Function)(Ex-
ception*, Excp_Handler).

virtual Boolean invoke_handler (Exception* excp)
Returns TRUE if the exception handler function was invoked for excp; otherwise,
this function returns FALSE.

void ignore_errors_handler (Exception* excp, Excp_Handler* fn);
This exception handler function ignores exceptions raised through the macros
RAISE and STOP. When invoked, this function saves a pointer to the exception
object excp in the jump handler fn. It then calls longjmp, passing the environment
saved in Jump_Handler. The program returns to the point after the call of setjmp
in the macro IGNORE_ERRORS discussed below.

13-16

COOL User’s Manual

Name:

Synopsis:

Exception Handling

VERIFY — Verify that an expression evaluates to non-zero

VERIFY (test_expression, REST: args);

test_expression Any valid C++ expression to be verified
args One or more of the following comma-separated arguments or val-
ues:

Symbol* group_name
One or more comma-separated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key_value_args
The name(s) and value(s) of any public data members in the
exception object

VERIFY Example

DB W=

}

13.15 This example is another variation of the previous two examples.
VERIFY_ERROR asserts that the index specified for a vector element is within range.
It creates a Verify_Error exception object and raises the exception when the index for
operator[] of a vector class is out of range.

inline int vector::operator[] (int n) {
VERIFY ((n>=0 && n < this->number_elements),

Error, “wector::operator[] () : $d out of range”, n);

return this->datal[n];

Lines 1 through 5 implement the code necessary for a typical operator[] member func-
tion of a class for a vector of integers. However, before the indexed element is looked up
and returned, the VERIFY macro invocation on lines 2 and 3 insures that the given
index is within range. When the index provided is out of range, VERIFY creates an
exception object and raises the exception to report the error. A handler for this exception
could prompt the user for a new index and retry the operation. If no exception handler is
found, program execution ends.

COOL User’s Manual

13-15

Exception Handling

STOP Example

(o)W, BE -SRI

13.13 In this example, STOP creates an Error exception object and raises the excep-
tion when the index for operator[] of a vector class is out of range.

inline int vector::operator[] (int n) {

if (n>=0 && n < this->number_elements)

return this->datal[n];

else

STOP (Error, “vector::operator[] (): $d out of range”, n);

Lines 1 through 6 implement the code necessary for a typical operator[] member func-
tion of a class for a vector of integers. However, when the index provided is out of range,
the STOP macro invocation in line 5 creates an exception object and raises the excep-
tion to report the error. A handler for this exception could prompt the user for a new
index and retry the operation. The distinction between the use of STOP and RAISE is
that STOP guarantees to end the program if the exception is not handled, whereas
RAISE will return.

VERIFY

13.14 The VERIFY macro asserts that an expression is TRUE by raising an excep-
tion of the appropriate type if itis FALSE. The exception type is optional, but if speci-
fied, is the group name or alias of the VERIFY_ERROR object created. This is
because the macro assumes that a public data member named test is defined. If the
exception type is not specified, no other arguments can be provided. VERIFY is similar
to RAISE in that it uses EXCEPTION to construct the exception object and then calls
the function raise to raise the exception. This function searches for an exception handler
of the appropriate type to handle the exception and, if found, invokes the exception han-
dler function and returns the exception object. If no exception handler is found, program
execution ends.

NOTE: The VERIFY macro takes some arguments that are actually pointers to Sym-
bol objects. These arguments control the relationship of an exception object with one or
more exception handlers. They can be the symbol representing the name of a class (as
with Error or Warning) that is created automatically for any class derived from Ex-
ception through the Generic class and the class macro. The arguments can also be
symbol aliases created in the COOL sym and ERR_MSG packages, or some application-
specific package. See section 11, Symbols and Packages, for more information.

13-14

COOL User’s Manual

Exception Handling

STOP

Name:

Synopsis:

13.12 The STOP macro raises an exception and ends program execution with exit if
the exception is not handled. By default in COOL, only exceptions of type Error will
exit and exceptions of type Fatal will abort. STOP is similar to RAISE in that it uses
EXCEPTION to construct the exception object and then calls its member function
raise to raise the exception. This function searches for an exception handler of the ap-
propriate type to handle the exception and, if found, invokes the exception handler func-
tion and returns the exception object. If no exception handler is found, however,
program execution ends. There are many variations of STOP that provide flexible and
efficient means of customizing the exception object and raising the exception. In par-
ticular, the variable number of group name arguments should reduce the need for many
different types of exception classes whose only difference is the type name.

NOTE: The STOP macro takes some arguments that are actually pointers to Symbol
objects. These arguments control the relationship of an exception object with one or
more exception handlers. They can be the symbol representing the name of a class (as
with Error or Warning) that is created automatically for any class derived from Ex-
ception through the Generic class and the class macro. The arguments can also be
symbol aliases created in the COOL sym and ERR_MsG packages, or some application-
specific package. See section 11, Symbols and Packages, for more information.

STOP — Raise an exception and end the program if not handled
STOP (Symbol* excp_type, REST: args);

excp_type A symbol representing the Exception class type (that is, Error,
Warning, and so forth)

args One or more of the following comma-separated arguments or val-
ues:

Symbol* group_name
One or more comma-separated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key_value_args
The name(s) and value(s) of any public data members in the
exception object

COOL User’s Manual

13-13

Exception Handling

Name: RAISE — A COOL macro for constructing and raising an exception
Synopsis: RAISE (Symbol* excp_type, REST: args);
excp_type A symbol representing the Exception class type (that is, Error,

Warning, and so forth)

args One or more of the following comma-separated arguments or val-
ues:

Symbol* group_name
One or more comma-separated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key_value_args
The name(s) and value(s) of any public data members in the
exception object

RAISE Example 13.11 Inthis example RAISE creates an Error exception object and raises the excep-
tion when the index for operator[] of a vector class is out of range.

inline int Vector::operator[] (int n) {
if (n>=0 && n < this->number_elements
return this->datal[n];
else
RAISE (Error, “wvector::operator[] (): $d out of range”, n);

(o)W, BE -SRI R

Lines 1 through 6 implement the code necessary for a typical operator[] member func-
tion of a class for vector of integers. However, when the index provided is out of range,
the RAISE macro invocation in line 5 creates an exception object and raises the excep-
tion to report the error.

13-12 COOL User’s Manual

EEUS I NS

Exception Handling

Lines 1 through 12 define a new exception class out_of_Range derived from the COOL
Fatal class. This new exception type has two public data members, value and con-
tainer, whose values will be provided when creating an instance of this type. Lines 5
through 7 define the constructor for the new exception type that initializes the format
message data member. Lines 8 through 11 implement a specialized report member
function. It uses the polymorphic type_of member function of the container class inher-
ited from Generic.

EXCEPTION (Out_of_Range, value=n, container=cl) ;

At some point in an application, line 1 invokes EXCEPTION, specifying the exception
type out_of_Range as the first argument and intermixed format string arguments and
data member initialization arguments of value and container. When expanded, this
macro generates:

(Exception_g =new Out_of_Range(),
Exception_g->value =n,
Exception_g—->container =cl,
Exception_g);

Line 1 assigns the global pointer Exception_g to point to a new instance of an
out_of_Range exception object. Lines 2 and 3 initialize the public data members of the
exception object. Line 4 returns a pointer to the new exception object that can be raised
as appropriate.

This example provides an interesting look at a general-purpose exception object that
uses the polymorphic runtime type determination provided by the Generic class and the
class macro. The exception type out_of_Range could be used in many types of con-
tainer classes (Vector<Type>, List<Type>, and so on) where a reference or index for
some element is out of range. Any of these classes could raise this exception to display
the error message and appropriate type-specific information without the need for a spe-
cialized exception type for each class.

RAISE

13.10 The RAISE macro allows an application program to create and raise an excep-
tion. RAISE uses EXCEPTION to construct the exception object and then calls its
member function raise, defined as a friend function of the exception class, to raise the
exception. This function searches for an exception handler of the appropriate type to
handle the exception and, if found, invokes the exception handler function. It returns
the exception object if the exception handler returns or if no exception handler is found.
The exception object may be examined to determine if the exception was handled and if
any alternate values were returned. There are many variations of RAISE that provide
flexible and efficient means of customizing the exception object and raising the excep-
tion. In particular, the variable number of group name arguments should reduce the need
for many different types of exception classes whose only difference is the type name.

NOTE: The RAISE macro takes some arguments that are actually pointers to Symbol
objects. These arguments control the relationship of an exception object with one or
more exception handlers. They can be the symbol representing the name of a class (as
with Error or Warning) that is created automatically for any class derived from Ex-
ception through the Generic class and the class macro. The arguments can also be sym-
bol aliases created in the COOL syu and ERR MsG packages, or some
application-specific package. See section 11, Symbols and Packages, for more informa-
tion.

COOL User’s Manual

13-11

Exception Handling

Lines 1 through 6 define a new exception class, Bad_Argument_Error, derived from
the COOL Fatal class. This new exception type has two public data members,
arg_name and arg_value, whose values will be provided when creating an instance of
this type. Line 7 invokes EXCEPTION, specifying the exception type Bad_Argu-
ment_Error as the first argument. Notice there are no group names in this invocation.
As a result, only an exception handler specifically created for exceptions of type
Bad_Argument_Error can be called if a Bad_Argument_Error exception is raised. Line
8 contains the second argument, which is the error message control string, in standard
printf format. Line 9 contains intermixed format string arguments and data member
initialization arguments. When expanded, this macro generates:

1 (Exception_g = new Bad_Argument_Error (),
2 Exception_g->arg_name = “foo”,
3 Exception_g->arg_value = x,
4 Exception_g->format_msg = hprintf (ERR_MSG (“Argument %$s has value $d\
5 which is out of range for vector %s.”), “foo”, x, vecl),
6 Exception_g);
Line 1 assigns the global pointer Exception_gto point to a new instance of aBad_aArgu-
ment_Error exception object. Lines 2 and 3 initialize the public data members of the
exception object. Lines 4 and 5 initialize the format message field to the message argu-
ment passed, with the appropriate argument values inserted. Note that this message is
actually a symbol in the COOL err_msG package. Line 6 returns a pointer to the new
exception object.
An exception handler for a Bad_argument_Error exception could prompt the user for a
new value for the named argument and return it in arg_value field if this exception
object is raised. This can be done through the virtual Exception::raise member func-
tion or more conveniently with the RAISE macro discussed in paragraph 13.10 below.
Example 3: This example is similar to the previous one, except that the constructor for the new
exception type object initializes the format message field. This is a general-purpose
exception type for any container class derived from the COOL Generic class as
discussed in Section 12, Polymorphic Management. Providing a local report member
function supercedes the virtual default implementation in the base Exception class.
1 Class Out_of_Range : public Fatal {
2 public:
3 int value;
4 Generic* container;
5 Out_of_Range () {
6 format_msg = “Value %$d is out of range for container %s.”
7 }
8 void report (ostreamé& os) {
9 Fatal::report (os);
10 os << form (format_msg, this->value, this->container->type_of());
11 }
12 bi

13-10 COOL User’s Manual

Exception Handling

EXCEPTION
Examples

Example 1:

DB W

Example 2:

(o)W, BE SRS I S R

O 00

13.9 Here are three examples of the use of the EXCEPTION macro.
Each makes use of a different form of the macro to show alternate features and usage.
Exception_g is a global exception object pointer. hprint £ () is a variation of the printf
function which returns a format string allocated on the heap. Both of these are provided
as part of the COOL exception handling facility. In addition, notice that the ordering of
the format_args and key_value_args arguments in example two depends on the control
characters in the format string. Finally, the code resulting from the macro expansion
makes heavy use of the comma operator and is standard C++, although this might look a
little confusing at first.

This is a simple use of EXCEPTION that specifies the exception type, a group name,
and a format string:

EXCEPTION (Error, SYM(Serious_Error), “Serious problemhere”);

Line 1 contains an invocation of the ExcEPTION macro for an exception of type Error
aliased with the group name serious_Error. This group name symbol is reference
through the COOL sym package. The message text follows as the third argument. When
expanded, this macro call generates:

(Exception_g =new Error (),

Exception_g.set_group_name (SYM(Serious_Error)),
Exception_g->format_msg = hprintf (ERR_MSG (“Serious problemhere.”)),
Exception_g);

Line 2 assigns the global pointer Exception_g to point to a new instance of an Error
exception object. Line 3 associates this exception object with the group name seri-
ous_Error. Line 4 initializes the format message field to the message argument passed.
Note that this message is actually a symbol in the COOL err_msc package, thus facili-
tating collection of all error messages in one location, and affording the ability to have
multiple translations of text for a single application. Line 5 returns a pointer to the new
exception object.

An exception handler on the global exception handler stack that is associated with the
group name serious_Error Will be called if this exception object is raised. This can be
done through the virtual Exception::raise member function, or more conveniently with
the RAISE macro discussed in paragraph 13.10 below.

In this example, a new exception class is derived containing two data members whose
values are filled in when the exception object is created. EXCEPTION is invoked with
an exception type, a format string, and a mix of data member arguments and format
arguments.

Class Bad_Argument_Error : public Fatal {

public:

bi

char* arg_name;
int arg_value;

Bad_Argument_Error ();

EXCEPTION (Bad_Argument_Error,
ERR_MSG (“Argument %$s has value %d that is out of range for vector $s”),
arg_name="foo”, arg_value=x, vecl);

COOL User’s Manual

13-9

Exception Handling

void Warning::default_handler ();
This function reports the exception message on the standard error stream and re-
turns to the point at which the exception was raised.

EXCEPTION

Name:

Synopsis:

13.8 The EXCEPTION macro simplifies the process of creating an instance of a par-
ticular type of exception object. It provides an interface for the application programmer
to create an exception object using the specified arguments to indicate group name(s),
initialize data members, or generate a format message. There are many variations of
EXCEPTION that provide flexible and efficient means of customizing the exception
object. In particular, the variable number of group name arguments should reduce the
need for many types of exception classes whose only difference is the type name.

NOTE: The EXCEPTION macro takes some arguments that are actually pointers to
Symbol objects. These arguments control the relationship of an exception object with
one or more exception handlers. They can be the symbol representing the name of a
class (as with Error or Warning) that is created automatically for any class derived
from Exception through the Generic class and the class macro. The arguments can also
be symbol aliases created in the COOL sym and ErRr_MsG packages, or some application-
specific package. See section 11, Symbols and Packages, for more information.

EXCEPTION — A COOL macro for constructing an exception object
EXCEPTION (Symbol* excp_type, REST: args);

excp_type A symbol representing the Exception class type (that is, Error,
Warning, and so forth)

args One or more of the following comma-separated arguments or val-
ues:

Symbol* group_name
One or more comma-separated pointers to Symbol objects
representing aliases for this exception class type

const char* format_string
A character string compatible with the standard printf format
containing the text of the error message

format_args
Any required argument(s) for the format string

key_value_args
The name(s) and value(s) of any public data members in the
exception object

13-8

COOL User’s Manual

Exception Handling

Predefined
Exception Types
and Handlers

13.7 COOL provides six predefined exception classes and five default
exception handlers. Each of the predefined exception types has a default
exception handler member function. The following rules apply in determining which
handler function should be invoked for a particular type of exception:

e If no exception handler is found and the exception is of type Error or Fatal, its
error message reports on the standard error stream and the program ends.

» If the exception is of type Warning, the warning message reports on the standard
error stream and the program resumes at the point where the exception was raised.

e If the exception is of type System_Error, the system error message reports on the
standard error stream and the program ends.

» If the exception is of type System_Signal, the signal error message reports on the
standard error stream and the program resumes at the point where the system func-
tion signal() was called.

» If the exception is of type Verify_Error, the expression that failed assertion re-
ports on the standard error stream and the program ends.

Exception is the base exception class and from it are derived Warning, System_Sig-
nal, Fatal, and Error. The System_Error and Verify_Error classes are derived from
the Error class. The default exception handlers are called only if no other exception
handler is established and available when an exception is raised.

For exceptions of type Error and Fatal, the exception handler reports the error message
of the exception on standard error and ends the program. Exceptions of the type Warn-
ing report a warning message on standard error and return to the point at which the ex-
ception was raised. Exceptions of type System_Error report an error message on
standard error and end the program. Finally, exceptions of type System_Signal report
an error message on standard error and the program resumes execution at the point at
which the system function signal was called. The following functions report exceptions
and deal with them:

void Fatal::default_handler ();
This member function reports the exception message on the standard error stream
and ends the program with a call to abort(), generating a core image that can be
used for further debugging purposes.

void Error::default_handler ();
This member function reports the exception message on the standard error stream
and ends the program normally with a call of exit(1).

void System_Error::default_handler ();
This member function reports the exception message on the standard error stream,
sets the global system errno variable appropriately, and ends the program with a
call to abort(), generating a core dump that can be used for further debugging pur-
poses.

void System_Signal::default_handler ();
This function reports the exception message on the standard error stream and re-
turns to the point at which a call to the system signal() function was made.

COOL User’s Manual

13-7

Exception Handling

Excp_Handler

Example

W0 =

—_
[RN N e WU, I

11
12

13
14
15
16
17

13.6 The following example shows a function that establishes an exception
handler function for exceptions associated with a group name File Error of type
My_Exceptions. It then attempts to open each file indicated in an array of pointers to file
name character strings.

#include <COOL/Exception.h> // Include header
#include <My_Exceptions.h> // My exception types
externvoidmy_file _handler (My_Exceptions* excp); // Exception handler

FILE* open_f (char* file, char* mode) {
FILE* temp; // Temp variable
if ((temp = fopen (file, mode)) == NULL) { // File open OK?

}

My_Excpl (SYM(File_Error)) excp; // Create exception
excp—>fname = file; // Set file name
excp_>fmode = mode; // Set file mode
excp->raise (); // Raise exception

Boolean open_files (char** file_names, char** modes, FILE** f_handles) {
Excp_Handler eh (my_file_handler, SYM(File_Error)); // Setup handler
for (int i =0; file_names[i] !=NULL; i++) // For each file

f_handles[i] =open_f (file_names[i], modes[i]); // Open file

Line 1 includes the COOL Exception header file. Line 2 includes an application-spe-
cific header file that defines exception types derived from Exception. Line 3 is an exter-
nal reference to some user-defined function to be called for exceptions of type
My_Exceptions. For example, this function might prompt the user for a new file name
and perform a retry operation. Lines 4 through 12 implement a function that attempts to
open file in mode with the system function fopen. If the open fails, an exception
My_Excpl associated with group namerile_Error is created and raised. Line 7 uses the
COOL syum package in which to store the group name symbol. In a typical application,
all application-specific symbols should be located in an application-specific package.
Lines 8 and 9 set two public data member slots in the exception object, and line 10 raises
the exception.

Lines 13 through 17 contain a function open_files that loops through an array of
file_names and attempts to open each file in the function open_£. Line 14 is the heart of
this function, where an exception handler objecten is created with a pointer to the func-
tion my_file_handler for exceptions of group name rFile_Error. This symbol is lo-
cated in the COOL sym package and would be referenced when an exception of type
My_Excpl is raised, as in lines 7 through 10. See section 11, Symbols and Packages, for
more information on the COOL symbol and package mechanism.

In this example, the exception handler my_file_handler is associated with the excep-
tion handler object eh created locally on line 14. When the constructor for en is exe-
cuted, a pointer to the exception handler object is placed on the global exception handler
stack. While this object is in scope and not pre-empted by a more specific handler, any
exception raised asssociated with the group name File_Error will be handled. When
function open_files completes and destructor for en called, the handler is removed
from the global exception handler stack.

13-6

COOL User’s Manual

Exception Handling

Excp_Handler Class 13.5 An exception handler provides a way to proceed from a particular

Name:
Synopsis:
Base Class:
Friend Class:

Constructors:

Member Functions:

type of exception by calling its exception handler function. An exception handler func-
tion could handle the exception by reporting the exception to standard error and ending
the program, or dropping a core image for further debugging by the programmer. An-
other way of proceeding is to query the user for a fix, store the fix in the exception ob-
ject, and return to the point where the exception was raised.

An instance of the Excp_Handler class is specified for a particular type of exception or
one or more exception group names with an associated exception handler function.
Such an instance invokes the specific exception handler function when an exception of
the appropriate type is raised. The Excp_Handler class also contains data members that
point to the top exception handler on the global exception handler stack and the next
exception handler after itself. When an exception handler object is instantiated, it is
placed at the top of the exception handler stack. When an exception israised, the excep-
tion stack is searched from the top for an appropriate handler. When one is found, it is
invoked and the exception object is passed as an argument. What action the exception
handler function takes is determined by the type of exception and is discussed in para-
graph 13.7, Predefined Exception Types and Handlers.

Excp_Handler — The class for handling exceptions.
#include <COOL/Exception.h>

Generic

Exception

Excp_Handler ()
Creates an exception handler object with defaults for the exception type and excep-
tion handler function and pushes itself on top of the global exception handler stack.
The default exception type is Error and the default exception handler function is
void exit_handler(Exception™).

Excp_Handler (Excp_Handler_Function fn, Symbol* excp_type)
Creates an exception handler object associated with the exception type excp_type,
initializes the exception handler function data member to fin, and pushes itself on
top of the global exception handler stack. The exception handler function is of type
void (Excp_Handler_Function)(Exception®).

Excp_Handler (Excp_Handler_Function f, int number,
Symbol* excp_typel, Symbol* excp_type2, ...);
Creates an exception handler object, creates number group names excp_typel,
excp_type2, and so on if necessary, associates this exception handler object with
number group names excp_typel, excp_type2, and so on, initializes the exception
handler function data member to fin, and pushes itself on top of the global exception
handler stack. The exception handler function is of type void (Excp_Han-
dler_Function)(Exception™).

virtual Boolean invoke_handler (Exception* excp)
Returns TRUE if the exception handler function was invoked for excp; otherwise,
this function returns FALSE.

COOL User’s Manual

13-5

Exception Handling

Friend Functions:

void set_group_names (Symbol* excp_type);
Creates a group name excp_type in the COOL sym package if necessary, and associ-
ates this exception object with the excp_type group name.

void set_group_names (int number, Symbol* excp_typel, Symbol*
excp_type2, ...);
Creates number group names excp_typel, excp_type2, and so on in the COOL sym
package if necessary, and associates this exception object with group names

excp_typel, excp_type2.

virtual void stop ();
Invoked to search for an exception handler when an exception is raised. If found,
the associated handler function is called and the exception handled flag is set to
TRUE; otherwise, this function sets the exception handled flag to FALSE. This
function is identical to raise except that if the exception handler function returns or
no exception handler is found, program execution is terminated.

friend ostream& operator<<(ostream& os, const Exception* excp)
Overloads the output operator to provide a formatted output capability for a pointer
to an exception object excp.

friend ostream& operator<< (ostream& os, const Exception& excp);
Overloads the output operator to provide a formatted output capability for a refer-
ence to an exception object excp.

13-4

COOL User’s Manual

Name:
Synopsis:

Base Class:
Friend Classes:

Constructors:

Member Functions:

Exception Handling

and illustrated in the example in paragraph 13.6, Excp_Handler Example. See section
11, Symbols and Packages, for more information.

Exception — The base class for building exception objects.
#include <COOL/Exception.h>

Generic

None

Exception ();
Creates an exception object, initializes the format message and message prefix data
members to NULL, and sets the exception handled flag to FALSE.

Exception (Symbol* excp_type);
Creates an exception object, creates a group name excp_type if necessary, associ-
ates this exception object with the excp_type group name, initializes the format
message and message prefix message data members to NULL, and sets the excep-
tion handled flag to FALSE.

Exception (int number, Symbol* excp_typel, Symbol* excp_type2, ...);
Creates an exception object, creates number group names excp_typel, excp_type2,
and so on if necessary, associates this exception object with group names
excp_typel, excp_type2, and so on, sets the format and message prefix data mem-
bers to NULL, and sets the exception handled flag to FALSE.

virtual void default_handler ();
Default exception handler called when this type of exception is raised if no user-
specified exception handler is found. This function does not set the exception han-
dled flag in the exception object.

inline void handled (Boolean handled);
Sets the exception handled flag to handled.

inline Boolean is_handled () const;
Returns TRUE if the exception was handled; otherwise, return FALSE.

Boolean match (Symbol* excp_type);
Returns TRUE if this exception object is in the group name excp_type; otherwise,
this function returns FALSE.

const char* message_prefix () const;
Returns the message prefix.

virtual void raise ();
Invoked to search for an exception handler when an exception is raised. If found,
the associated handler function is called and the exception handled flag is set to
TRUE; otherwise, this function sets the exception handled flag to FALSE. If the
exception handler function returns or no exception handler is found, the program
resumes execution at the point at which the exception was raised.

virtual void report (ostream& os) const;
Reports the exception message on the output stream os. The exception handler
functions and the output operator function of Exception call this member function.

COOL User’s Manual

13-3

Exception Handling

When an exception handler object is declared, it is placed on the top of a global excep-
tion handler stack. When an exception is raised, a search is made for an exception han-
dler. The handler search starts at the top of the exception handler stack, with the most
recently defined exception handler at the top of the stack. An exception handler func-
tion is called if a match is found between the exception type or group name of the excep-
tion raised, and a handler function on the exception handler stack.

The COOL exception handling facility provides several macros that simplify the proc-
ess of creating, raising, and manipulating exceptions. These macros are implemented
with the COOL macro facility discussed in Section 10, Macros. The EXCEPTION
macro simplifies the process of creating an instance of a particular type of exception
object. The RAISE macro allows the programmer to easily raise an exception and
search for an exception handler. The STOP macro is similar to the RAISE macro, ex-
cept that it guarantees to end the program if the exception is not handled. The VERIFY
macro raises an exception if an assertion for some particular expression evaluates to
FALSE. Finally, the IGNORE_ERRORS macro provides a mechanism to ignore an
exception raised while executing a body of statements.

The COOL exception handling mechanism supports the concept of group names or ali-
ases for classes of exceptions that require no specialization of the exception object, but
do require a distinct name to provide a specific exception handler. For example, an in-
dex exception class to handle indexing range errors in a vector class could be defined
with aliases established for get and set operations. The appropriate get and set member
functions set the alias of the exception object as necessary, and provide a specialized
exception handler. If an indexing exception is detected at some point by one of these
member functions, the appropriate handler function can be invoked. As a result, two
different exception handlers can be used while only one type of index exception object
is required.

Exception Class

13.4 The Exception class reports exceptions through a message prefix and a format
string. Both are implemented as public data members in the exception object. An excep-
tion handled status data member is also used to determine if the exception was handled.
All of these are implemented as public data members, which makes access easier by the
exception handler functions and the EXCEPTION macro. In addition, a list of excep-
tion types is maintained in a group names data member to support aliasing and subclass-
ing of exception types. The Exception class includes member functions for reporting a
message (using the message prefix and format string) on a specified output stream, de-
termining if the exception object is of a particular type or group, and setting the excep-
tion handled status. Finally, it also includes a member function that searches for a
handler to invoke on this exception type.

Classes derived from the Exception class save the state of the situation and communi-
cate this information to exception handlers. When an exception can be fixed and pro-
ceeding from the exception is possible, information on how the exception handler
proceeded from the exception is also stored in the exception object by the invoked ex-
ception handler function.

Note: The excp_type arguments in the Exception class constructors and member func-
tions are pointers to Symbol objects. These arguments control the relationship of an
exception object with one or more exception handlers. They can be the symbol repre-
senting the name of a class (as with Error or Warning) that is created automatically for
any class derived from Exception through the Generic class and the class macro. The
arguments can also be symbol aliases created in the COOL sym package, or some appli-
cation-specific package. This is discussed in the next paragraph, Excp_Handler Class,

13-2

COOL User’s Manual

EXCEPTION HANDLING

Introduction

13.1 The Exception class, its derived classes, Excp_Handler class, and the exception
interface macros offer programmers an easy means of reporting and handling excep-
tions in an application. This section discusses the base Exception and Excp_Handler
classes. It also covers predefined exceptions and exception handlers, referencing excep-
tions as symbols in a package, exception group names (aliases), the report message text
package, and user-defined exceptions.

Requirements

13.2 This section assumes that you have a working knowledge of C++ and have read
and understood Section 10, Macros, and Section 11, Symbols and Packages.

Exceptions

13.3 In COOL, program anomalies are known as exceptions. An exception can be an
error, but it can also be a problem such as impossible division or information overflow.
Exceptions can impede the development of object-oriented libraries. Exception han-
dling offers a solution by providing a mechanism to manage such anomalies and sim-
plify program code.

The C++ exception handling scheme is a raise, handle, and proceed mechanism similar
to the Common Lisp Condition Handling system. When a program encounters an anom-
aly that is often (but not necessarily) an error, it has the following options:

* Represent the anomaly in an object called an exception

* Announce the anomaly by raising the exception

* Provide solutions to the anomaly by defining and establishing handlers
* Proceed from the anomaly by invoking a handler function

The COOL exception handling facility provides an exception class (Exception), an ex-
ception handler class (Excp_Handler), a set of predefined exception subclasses
(Warning, Error, Fatal, and so on), and a set of predefined exception handler func-
tions. In addition, the macros EXCEPTION, RAISE, STOP, and VERIFY allow the
programmer to easily create and raise an exception at any point in a program.

When an exception is raised (through macros RAISE or STOP, for example), a search
begins for an exception handler that handles this type of exception. An exception han-
dler, if found, deals with the exception by calling its exception handler function. The
exception handler function can correct the exception and continue execution, ignore the
exception and resume execution, or end the program. In COOL, an exception handler
for each of the predefined exception types exists on the global exception handler stack.

An exception handler invokes a specific exception handler function for a specific type
of exception or group of exceptions. Handling an exception means proceeding from the
exception. An exception handler function could report the exception to standard error
and end the program, or drop a core image for further debugging by the programmer.
Another way of proceeding is to query the user for a fix, store the fix in the exception
object, and return to where the exception was raised.

COOL User’s Manual

13-1

Printed on: Wed Apr 18 07:14:46 1990

Last saved on: Tue Apr 17 13:37:47 1990

Document: s13

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

